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Our Data-driven World
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Science
• Genomics

• Astronomy
• Weather data

Humanities
• Social interactions
• Historical documents

Business
• Product sales
• Stock market
• Customer data

Entertainment
• Internet images

• Movie & music clips

Medicine
• MRI & CT scans
• Patient records

Massive Data

Ad placement

Scientific 
breakthroughs

Business process 
efficiencies

Personalized 
recommendations

Improved 
healthcare

Fraud detection

Analysis Insights



Evolution of Big Data to Real Time Analytics Systems
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2000s

2005s

2010s

2015s
2020s

Data 
Warehouses

Database
Analytics

MapReduce
Analytics

Dataflow
Analytics

Stream Data
Analytics



Record-based Stream Processing Systems
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• Enables real-time processing, providing lower latencies but 
sacrifices throughput



Micro-batched Stream Processing Systems
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• Benefits from higher throughput but typically results in 
higher average latency



Decisions when Executing Streaming Workloads
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Goal:
Execute MapReduce workload
Goal:
Execute a streaming application with latency < 50ms 

Decisions:
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Selected Perf-Aware Parameters in Storm
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Name Description Default

supervisor.slots.ports Number of Worker processes per machine 4

topology.workers Number of Worker processes for the entire topology 1

parallelism hint (ph) Number of Executor threads per spout/bolt in topology 1

topology.tasks Number of tasks per spout or bolt in a topology ph

topology.worker.receiver.thread.count Number of tuple receiver threads per worker 1

topology.acker.executors Number of Acker threads to spawn for the topology Not set

topology.max.spout.pending Max number of tuples to be pending on a spout task Not set

topology.executor.receive.buffer.size Size of receive queue per Executor 32768

topology.transfer.buffer.size Size of outbound message (transfer) queue per Worker 1024



Selected Perf-Aware Parameters in Spark Streaming
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Name Description Default

spark.driver.cores Number of cores to use for the driver process 1

spark.driver.memory Amount of memory to use for the driver process 1g

spark.executor.instances Number of executors to lunch per cluster node 1

spark.executor.cores Number of cores to use on each executor for running tasks all

spark.executor.memory Total amount of memory to use per executor process 1g

spark.shuffle.compress Whether to compress map output files false

spark.streaming.receiver.maxRate Max rate (records/sec) for receiving data per receiver not set

spark.streaming.blockInterval Interval at which input data is partitioned into blocks 200ms

batchDuration Time interval at which data will be divided into batches 1000ms



Impact of Parameter Configurations
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r: Records/partition
p: Partitions/second

Scenario: Spark Streaming, 5-node cluster, streaming classification application, real-world data
*L. Odysseos and H. Herodotou. Exploring System and Machine Learning Performance Interactions when Tuning 
Distributed Data Stream Applications. ICDEW  2022



Performance Tuning Problem

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

𝑔 = DAG of operators

𝑑 = input data properties

𝑟 = cluster resources

𝑝 = parameter settings

● Performance Optimization

𝑝𝑜𝑝𝑡 = arg max
𝑝 𝜖 𝑆

𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● NP-Hard problem
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Goal: Automate the process of configuring and running streaming 
applications to meet service level objectives



Key Challenges
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Large and 
complex 

parameter 
space

Dynamic 
changes in 
input data 

stream

Non-linear 
impact of 

applications 
& hardware
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Method Taxonomy of Tuning Approaches
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Use cost models & statistics to find optimal 
settings

Cost Modeling

Use simulator to estimate application 
performance

Simulation-
based

Execute application with different settings 
iteratively

Experiment-
driven

Use machine learning to model application 
performance

Machine 
Learning

Change configurations while application is 
running

Adaptive



Tuning Method Taxonomy – Cost Modeling

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● Use statistical cost models 

to represent 𝐹

● Use optimization algorithm 

to find optimal parameter 

settings
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Tuning Method Taxonomy – Simulation based

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● Use modular or complete 

simulator to represent 𝐹

● Use optimization algorithm 

to find optimal parameter 

settings
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Tuning Method Taxonomy – Experiment-driven

● Execute the experiments repeatedly with different parameter 

settings, guided by a search algorithm
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Application

Recommended 
parameters

Experiments

Exploit 
parameters

Stream Data

Target



Tuning Method Taxonomy – Machine Learning

● Employ machine learning methods to establish performance 

models 𝐹
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Offline Phase

Historical 
data Output

Feature 
selection

Modeling

Online Phase

New
app

Best 
conf

Prediction

Optimization



Tuning Method Taxonomy – Adaptive

● Track execution of an application and change its configuration 

in an online fashion in order to improve performance

19
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Cost Modeling

Build performance prediction models by using statistical cost functions 

21

Cost Constants

Cost Formulas

Cost Estimation

Operations

Parameter 
Values

Statistics

Profiling Prediction Optimization



Cost Modeling – Comparison 
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1. ICDEW’13 - Performance Optimization for Distributed Intra-Node-Parallel Streaming Systems
2. ACM/SPEC’13 - Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs
3. CoRR’18 - Trevor: Automatic Configuration and Scaling of Stream Processing Pipelines
4. ICDE’19 - Caladrius: A Performance Modelling Service for Distributed Stream Processing Systems

Platform Paper Profiling Prediction Optimization

Storm 1. Sax et al. Performance metrics Analytical model Direct algorithm

Storm 2. Bedini et al. Performance metrics Fine-grained cost 
model

no

Heron 3. Trevor Performance metrics Linear models no

Heron 4. Caladrius Performance metrics Cost models Topological 
sorting



Details of a Paper – Data Flow Cost
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ICPE’13 Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs

Input data 
reading cost

Output data 
writing cost

Data transfer cost

Transfer cost classification:
● Within same JVM
● Within same node but diff JVM
● With different nodes 



Details of a Paper – Processing Cost

Spout and Bolt Cost:

● Read: read a source

● Destination: de-serialize

● Transform(γ): row data => storm tuple

● Emit: transfer cost

● Group: group by (to all, to some, to one)

● Serialize: for efficient transmit

● Write: output result

24
ICPE’13 Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs



Cost Modeling Approach: Pros & Cons
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• Very efficient for predicting 
performance

• Good accuracy in many (not 
complex) scenarios

Pros

• Hard to capture complexity of 
system internals & pluggable 
components (e.g., schedulers)

• Models often based on 
simplified assumptions

• Not effective on 
heterogeneous clusters

Cons
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Simulation-based

Build performance models based on modular or complete simulation
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Simulation-based – Comparison 
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1. FCUS’16 - CEPSim: Modelling and simulation of Complex Event Processing systems in cloud environments
2. IRI’17 - Performance Analysis of Apache Storm Applications Using Stochastic Petri Nets
3. MASCOTS’17 - Model-based Performance Evaluation of Batch and Stream Applications for Big Data
4. AINA’18 - Modeling and Simulation of Spark Streaming

Platform Simulator System execution System schedule Configuration 

parameters

Storm 1. CEPSim Task sub level yes Only basic ones

Storm 2. Requeno et al. Task level yes Many

Spark 3. Kroß et al. Task level yes Only basic ones

Spark 4. SSP Task level FIFO Only basic ones



Details of a Paper

Simulation of a real run
● Workload
● Cost of a stage
● #worker nodes
● Resource of each node
● Batch interval
● Data pattern
● Concurrency 

29

Not a 
real run

AINA’18 - Modeling and Simulation of Spark Streaming



Simulation-based Approach: Pros & Cons
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• High accuracy in simulating 
dynamic system behaviors

• Efficient for predicting fine-
grained performance

Pros

• Hard to comprehensively 
simulate complex internal 
dynamics

• Unable to capture dynamic 
cluster utilization

• Not very efficient for finding 
optimal settings

Cons
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Experiment-driven
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[Sample] 
Input Data

Streaming 
Application

DSPS

Parameter
Search Engine

Best 
Parameter

Settings

Application 
Executor

Conf

Performance 
Analyzer

Logs



Experiment-driven – Comparison 
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1. MASCOTS’16 - An Uncertainty-aware Approach to Optimal Configuration of Stream Processing Systems
2. CLUSTER’15 - Machines Tuning Machines: Configuring Distributed Stream Processors with Bayesian Optimization
3. SoCC’17 - Towards Automatic Parameter Tuning of Stream Processing Systems
4. TAAS’18 - A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications

Platform Papers Algorithm Optimization

Storm 1. BO4CO Gaussian Processes Latin Hypercube Sampling (LHS)

Storm 2. Fischer et al. Bayesian /

Storm 3. Bilal et al. Hill Climbing Latin Hypercube Sampling (LHS)

Storm 4. Liu et al. Trial-and-error Stepwise profiling



Details of a Paper

● Profiling
○ Application feature

○ Platform capability

○ Operator capacity

34

TAAS’18 A Stepwise Auto-Profiling Method 
for Performance Optimization of Streaming 
Applications



Experiment-driven Approach: Pros & Cons
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• Finds good settings based on 
real test runs on real systems

• Works across different 
system versions and 
hardware

Pros

• Very time consuming as it 
requires multiple actual runs

• Not cost effective for ad-hoc 
analytics applications

Cons
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Machine learning
● Use historical data to fit 2 GPs:

○ Latency
○ Future Load

● Optimize HPs
● Update covariance matrix of 

each model
● Construct state transition 

graph from estimations that 
models impact of actions (i.e. 
degree of parallelism)

● Utilize graph to select 
transition actions that:

○ Minimize cost
○ Maximize performance

Zacheilas (2015)

Historical 

data

Optimize 

HPs

Update 

covariance 

matrices (K)

Latency

Future 
Load

State transition 

graph
Estimations

Optimal 

transition actions
Model action 

impact

Offline 

phase

Online 

phase
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Machine learning
Li (2016) ● Use machine specifications 

to model workload 
performance

○ CPU cores
○ Memory
○ Number of threads

● Utilize Support Vector 
Regression (SVR) to model 
performance surface

○ Mean tuple processing 
latency

○ Mean tuple transfer latency 
among tasks

● Use heuristic search to 
identify a scheduling plan 
with the optimal degree of 
parallelism

Machine specs

Mean tuple 

processing & 

transfer latency

SVR

Performance 
surface modeling

Schedule 

generator

Optimal 

scheduling 

plan
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Machine learning
Trotter (2017) ● Two main components:

○ Sensors collect performance 
metrics from Nimbus and JVMs

○ Optimizers (either genetic 
algorithms or Bayesian 
optimization) analyze the 
collected profiles to search the 
configuration space

Nimbus JVMs

Sensors

Collect 
performance 

metrics

Optimizers
Suggested 

configuration

Collected
profiles

Search 
configuration 

space
Classifier

(SVM)

● Extended work (2019):
○ Used a classifier to discard 

possibly bad configurations (i.e. 
under 80% of max throughput)

39



Machine learning
Wang (2017) ● OrientStream: A framework 

that exploits incremental ML 
for modeling and predicting 
resource usage in DSPEs

● Models various features at 
different levels

○ Data
○ Plan
○ Operator
○ Cluster

● Trains an ensemble of 4 
models

○ Naive Bayes
○ Hoeffding tree
○ Online bagging
○ Nearest neighbours

● Detects and discards outliers 
in training data

● Automatically adjust operator 
parallelism based on 
thresholds to increase 
performance

Nearest neighbours

Online bagging

Naive Bayes

Hoeffding tree

Model ensemble

Cluster

Operator

Plan

Feature levels

Data Abnormal

alarm

Operator

parallelism

adjustment

40



Machine learning
Vaquero (2018) ● An approach that performs 

auto-tuning on Spark 
Streaming workloads

● Data generation
○ Real
○ Synthetic

● Metrics selection
○ Factor Analysis for configuration 

parameter correlation and 
importance

○ K-means for clustering 
parameters into meaningful 
groups

● Metrics Ranking
○ Lasso path analysis to rank 

parameter impact on 
performance

● Automated tuning
○ RL module explores and selects 

configurations

Real 

workloads

Synthetic 

workloads

Data 
generation

Factor 

Analysis (FA)

K-means 

clustering

Metrics
selection

Lasso

path analysis

Metrics
ranking

RL module

Automated
tuning

Increase/decrease 
configuration 
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Machine Learning Approach: Pros & Cons
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• Ability to capture complex 
system dynamics

• Independence from system 
internals and hardware

• Learning based on real 
observations of system 
performance

Pros

• Requires large training sets, 
which are expensive to collect

• Training from history logs 
leads to data under-fitting

• Typically low accuracy for 
unseen analytics applications

Cons
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Traffic-aware

scheduler

Adaptive tuning
Xu (2014) ● T-Storm:  An extension of 

Apache Storm which mainly 
concerns the replacement of 
the default scheduler to 
increase throughput

● The traffic-aware scheduler 
aims at minimizing the traffic 
between nodes and processes

● Occasionally determine the 
number of workers to use for 
each topology

○ Assign/re-assign tasks 
dynamically

● Consolidation: Minimize the 
number of worker nodes as 
much as possible 

Nimbus
Default 

scheduler

Worker Worker Worker Worker
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Adaptive tuning
Das (2014) ● Batch size is considered one of 

the most important tuning 
parameters in DSPSs

● This work focuses on 
dynamically adapting batch 
size in order to minimize 
latency

● The control module collects 
job stats to learn system 
behavior

● The batching module requests 
batch intervals and generates 
batches accordingly

Key: Keep batch processing time 
less than the batch interval

Batching 

module

Processing 

module

Control 

module

Streaming
data

Batch
queue

Job statsBatch intervals

Output
results
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Adaptive tuning
Fu (2015) ● DRS: Dynamic Resource 

Scheduler module
● Dynamically assigns 

resources to workloads by 
predicting them using 
Jackson networks from the 
queueing theory

● Employ a greedy algorithm 
for finding an optimal 
scheduling plan
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Adaptive tuning
Venkataraman (2017) ● Drizzle: A system that 

decouples the coordination 
interval from the processing 
interval in Spark streaming 
that improves:

○ Fault tolerance
○ Adaptability

● Group scheduling: Mitigates 
scheduling bottlenecks by 
enabling concurrent batch 
processing in tasks

● Pre-scheduling: Enable data 
exchange between 
executors without 
contacting the driver

● Optimizations within and 
across batches
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Adaptive tuning
Petrov (2018)

● Collect performance 
statistics and utilization 
metrics

● Performance modeling
● Decide whether and how to 

scale current application to 
maximize throughput by 
adding/removing

○ Workers
○ Executors

Statistics

Performance 

model

Scaling

events

Spark Dynamic App

Handle 

scaling 

events

Resource 

manager

Spark Master Spark Workers

Workers

Executors
48



Adaptive Approach: Pros & Cons

49

• Finds good settings based on 
actual task runs

• Able to adjust to dynamic 
runtime status

• Works well for ad-hoc 
streaming applications

Pros

• Inappropriate configuration 
can cause issues (e.g., 
stragglers)

• Neglects efficient resource 
utilization in the system

Cons
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Comparison of Approaches

Feature Cost modeling Simulation Experiment-driven Machine learning Adaptive 

Key modeling technique cost functions simulation search algorithms ML models mixed 

Number of parameters modeled some some many many some 

System understanding strong strong light no strong 

Need for history logs light light strong strong light 

Need for data input stats light light no strong light 

Real tests to run some no yes yes yes 

Time to build model efficient medium slow slow medium 

Prediction accuracy medium medium medium high medium 

Adapt to workload light light no no adaptive 

Adapt to system changes no light no adaptive light 
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Which Approach to Choose
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•Yes → Machine learning

•No → Cost modeling

Available history logs: 

•Change more quickly → Adaptive

•Comparatively stable → Simulation or cost modeling

Workload frequent Changes:

•More time for delivery → Experiment-driven or machine learning 

•Less time for delivery → Cost modeling

Project deadline:

•Less parameters → Cost modeling or simulation

•More parameters → Experiment-driven or machine learning 

Parameter number:



Open Problems & Challenges
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Cluster heterogeneity

Cloud computing 

Edge computing



Cluster Heterogeneity

● Modern hardware such as NVRAM, GPUs, and FPGAs also calls for 

investigation, including its impact on the performance of streaming 

applications

Challenges:

● How to configure the number of GPU and CPU cores with the cluster 

heterogeneity?

● How to model the performance of the new systems with modern hardware?
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Cloud Computing  

● The proliferation of the Cloud led to new cloud-based data streaming 

engines such as Amazon Kinesis and Confluent Cloud

Challenges:

● How to manage performance interactions among multiple tenants?

● How to ensure high scalability and elasticity by dynamically adding more 

resources?

● How to navigate the tradeoffs between high performance and fault 

tolerance?
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Edge Computing

● A recent trend in stream-based computing, especially in the 

Internet-of-Things (IoT) domain, involves decentralized 

processing at the source of the data (i.e., at the edge)

Challenges:

● How to alleviate the pressure of computation at the edge?

● How to manage devices with limited capabilities at the edge?

● How to perform the application reconfigurations at the edge?
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Conclusion

● Distributed data stream processing systems (DSPSs) such as 

Storm, Flink, and Spark Streaming are widely used to process 

continuous data streams in (near) real-time

● This tutorial offers a comprehensive review of the state-of-the-

art automatic performance tuning approaches for DSPSs

● Five categories: Cost modeling, Simulation-based, Experiment-

driven, Machine learning, and Adaptive
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Thanks!

Herodotos Herodotou
Lambros Odysseos
Yuxing Chen
Jiaheng Lu
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