
Automatic Performance Tuning
for Distributed Data Stream
Processing Systems

Herodotos Herodotou, Cyprus University of Technology
Lambros Odysseos, Cyprus University of Technology
Yuxing Chen, Tencent Inc.
Jiaheng Lu, University of Helsinki

May 2022

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

2

Our Data-driven World

3

Science
• Genomics

• Astronomy
• Weather data

Humanities
• Social interactions
• Historical documents

Business
• Product sales
• Stock market
• Customer data

Entertainment
• Internet images

• Movie & music clips

Medicine
• MRI & CT scans
• Patient records

Massive Data

Ad placement

Scientific
breakthroughs

Business process
efficiencies

Personalized
recommendations

Improved
healthcare

Fraud detection

Analysis Insights

Evolution of Big Data to Real Time Analytics Systems

4

2000s

2005s

2010s

2015s
2020s

Data
Warehouses

Database
Analytics

MapReduce
Analytics

Dataflow
Analytics

Stream Data
Analytics

Record-based Stream Processing Systems

5

• Enables real-time processing, providing lower latencies but
sacrifices throughput

Micro-batched Stream Processing Systems

6

• Benefits from higher throughput but typically results in
higher average latency

Decisions when Executing Streaming Workloads

7

Goal:
Execute MapReduce workload
Goal:
Execute a streaming application with latency < 50ms

Decisions:

Task

Task

Task

In
p

u
t

O
u

tp
u

t Task parallelism
 Micro-batch size
 …

 Number of cores
 Memory settings
 …

 Number of nodes
 Node/VM specs
 …R

e
so

u
rc

e
s

P
la

tf
o

rm
A

p
p

li
ca

ti
o

n

C C

WW

C C

WW

Selected Perf-Aware Parameters in Storm

8

Name Description Default

supervisor.slots.ports Number of Worker processes per machine 4

topology.workers Number of Worker processes for the entire topology 1

parallelism hint (ph) Number of Executor threads per spout/bolt in topology 1

topology.tasks Number of tasks per spout or bolt in a topology ph

topology.worker.receiver.thread.count Number of tuple receiver threads per worker 1

topology.acker.executors Number of Acker threads to spawn for the topology Not set

topology.max.spout.pending Max number of tuples to be pending on a spout task Not set

topology.executor.receive.buffer.size Size of receive queue per Executor 32768

topology.transfer.buffer.size Size of outbound message (transfer) queue per Worker 1024

Selected Perf-Aware Parameters in Spark Streaming

9

Name Description Default

spark.driver.cores Number of cores to use for the driver process 1

spark.driver.memory Amount of memory to use for the driver process 1g

spark.executor.instances Number of executors to lunch per cluster node 1

spark.executor.cores Number of cores to use on each executor for running tasks all

spark.executor.memory Total amount of memory to use per executor process 1g

spark.shuffle.compress Whether to compress map output files false

spark.streaming.receiver.maxRate Max rate (records/sec) for receiving data per receiver not set

spark.streaming.blockInterval Interval at which input data is partitioned into blocks 200ms

batchDuration Time interval at which data will be divided into batches 1000ms

Impact of Parameter Configurations

10

r: Records/partition
p: Partitions/second

Scenario: Spark Streaming, 5-node cluster, streaming classification application, real-world data
*L. Odysseos and H. Herodotou. Exploring System and Machine Learning Performance Interactions when Tuning
Distributed Data Stream Applications. ICDEW 2022

Performance Tuning Problem

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

𝑔 = DAG of operators

𝑑 = input data properties

𝑟 = cluster resources

𝑝 = parameter settings

● Performance Optimization

𝑝𝑜𝑝𝑡 = arg max
𝑝 𝜖 𝑆

𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● NP-Hard problem

11

Goal: Automate the process of configuring and running streaming
applications to meet service level objectives

Key Challenges

12

Large and
complex

parameter
space

Dynamic
changes in
input data

stream

Non-linear
impact of

applications
& hardware

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

13

Method Taxonomy of Tuning Approaches

14

Use cost models & statistics to find optimal
settings

Cost Modeling

Use simulator to estimate application
performance

Simulation-
based

Execute application with different settings
iteratively

Experiment-
driven

Use machine learning to model application
performance

Machine
Learning

Change configurations while application is
running

Adaptive

Tuning Method Taxonomy – Cost Modeling

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● Use statistical cost models

to represent 𝐹

● Use optimization algorithm

to find optimal parameter

settings

15

Tuning Method Taxonomy – Simulation based

● Application Performance

𝑝𝑒𝑟𝑓 = 𝐹(𝑔, 𝑑, 𝑟, 𝑝)

● Use modular or complete

simulator to represent 𝐹

● Use optimization algorithm

to find optimal parameter

settings

16

Tuning Method Taxonomy – Experiment-driven

● Execute the experiments repeatedly with different parameter

settings, guided by a search algorithm

17

Application

Recommended
parameters

Experiments

Exploit
parameters

Stream Data

Target

Tuning Method Taxonomy – Machine Learning

● Employ machine learning methods to establish performance

models 𝐹

18

Offline Phase

Historical
data Output

Feature
selection

Modeling

Online Phase

New
app

Best
conf

Prediction

Optimization

Tuning Method Taxonomy – Adaptive

● Track execution of an application and change its configuration

in an online fashion in order to improve performance

19

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

20

Cost Modeling

Build performance prediction models by using statistical cost functions

21

Cost Constants

Cost Formulas

Cost Estimation

Operations

Parameter
Values

Statistics

Profiling Prediction Optimization

Cost Modeling – Comparison

22

1. ICDEW’13 - Performance Optimization for Distributed Intra-Node-Parallel Streaming Systems
2. ACM/SPEC’13 - Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs
3. CoRR’18 - Trevor: Automatic Configuration and Scaling of Stream Processing Pipelines
4. ICDE’19 - Caladrius: A Performance Modelling Service for Distributed Stream Processing Systems

Platform Paper Profiling Prediction Optimization

Storm 1. Sax et al. Performance metrics Analytical model Direct algorithm

Storm 2. Bedini et al. Performance metrics Fine-grained cost
model

no

Heron 3. Trevor Performance metrics Linear models no

Heron 4. Caladrius Performance metrics Cost models Topological
sorting

Details of a Paper – Data Flow Cost

23
ICPE’13 Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs

Input data
reading cost

Output data
writing cost

Data transfer cost

Transfer cost classification:
● Within same JVM
● Within same node but diff JVM
● With different nodes

Details of a Paper – Processing Cost

Spout and Bolt Cost:

● Read: read a source

● Destination: de-serialize

● Transform(γ): row data => storm tuple

● Emit: transfer cost

● Group: group by (to all, to some, to one)

● Serialize: for efficient transmit

● Write: output result

24
ICPE’13 Modeling Performance of a Parallel Streaming Engine: Bridging Theory and Costs

Cost Modeling Approach: Pros & Cons

25

• Very efficient for predicting
performance

• Good accuracy in many (not
complex) scenarios

Pros

• Hard to capture complexity of
system internals & pluggable
components (e.g., schedulers)

• Models often based on
simplified assumptions

• Not effective on
heterogeneous clusters

Cons

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

26

Simulation-based

Build performance models based on modular or complete simulation

27

Simulation-based – Comparison

28

1. FCUS’16 - CEPSim: Modelling and simulation of Complex Event Processing systems in cloud environments
2. IRI’17 - Performance Analysis of Apache Storm Applications Using Stochastic Petri Nets
3. MASCOTS’17 - Model-based Performance Evaluation of Batch and Stream Applications for Big Data
4. AINA’18 - Modeling and Simulation of Spark Streaming

Platform Simulator System execution System schedule Configuration

parameters

Storm 1. CEPSim Task sub level yes Only basic ones

Storm 2. Requeno et al. Task level yes Many

Spark 3. Kroß et al. Task level yes Only basic ones

Spark 4. SSP Task level FIFO Only basic ones

Details of a Paper

Simulation of a real run
● Workload
● Cost of a stage
● #worker nodes
● Resource of each node
● Batch interval
● Data pattern
● Concurrency

29

Not a
real run

AINA’18 - Modeling and Simulation of Spark Streaming

Simulation-based Approach: Pros & Cons

30

• High accuracy in simulating
dynamic system behaviors

• Efficient for predicting fine-
grained performance

Pros

• Hard to comprehensively
simulate complex internal
dynamics

• Unable to capture dynamic
cluster utilization

• Not very efficient for finding
optimal settings

Cons

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

31

Experiment-driven

32

[Sample]
Input Data

Streaming
Application

DSPS

Parameter
Search Engine

Best
Parameter

Settings

Application
Executor

Conf

Performance
Analyzer

Logs

Experiment-driven – Comparison

33

1. MASCOTS’16 - An Uncertainty-aware Approach to Optimal Configuration of Stream Processing Systems
2. CLUSTER’15 - Machines Tuning Machines: Configuring Distributed Stream Processors with Bayesian Optimization
3. SoCC’17 - Towards Automatic Parameter Tuning of Stream Processing Systems
4. TAAS’18 - A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications

Platform Papers Algorithm Optimization

Storm 1. BO4CO Gaussian Processes Latin Hypercube Sampling (LHS)

Storm 2. Fischer et al. Bayesian /

Storm 3. Bilal et al. Hill Climbing Latin Hypercube Sampling (LHS)

Storm 4. Liu et al. Trial-and-error Stepwise profiling

Details of a Paper

● Profiling
○ Application feature

○ Platform capability

○ Operator capacity

34

TAAS’18 A Stepwise Auto-Profiling Method
for Performance Optimization of Streaming
Applications

Experiment-driven Approach: Pros & Cons

35

• Finds good settings based on
real test runs on real systems

• Works across different
system versions and
hardware

Pros

• Very time consuming as it
requires multiple actual runs

• Not cost effective for ad-hoc
analytics applications

Cons

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

36

Machine learning
● Use historical data to fit 2 GPs:

○ Latency
○ Future Load

● Optimize HPs
● Update covariance matrix of

each model
● Construct state transition

graph from estimations that
models impact of actions (i.e.
degree of parallelism)

● Utilize graph to select
transition actions that:

○ Minimize cost
○ Maximize performance

Zacheilas (2015)

Historical

data

Optimize

HPs

Update

covariance

matrices (K)

Latency

Future
Load

State transition

graph
Estimations

Optimal

transition actions
Model action

impact

Offline

phase

Online

phase

37

Machine learning
Li (2016) ● Use machine specifications

to model workload
performance

○ CPU cores
○ Memory
○ Number of threads

● Utilize Support Vector
Regression (SVR) to model
performance surface

○ Mean tuple processing
latency

○ Mean tuple transfer latency
among tasks

● Use heuristic search to
identify a scheduling plan
with the optimal degree of
parallelism

Machine specs

Mean tuple

processing &

transfer latency

SVR

Performance
surface modeling

Schedule

generator

Optimal

scheduling

plan

38

Machine learning
Trotter (2017) ● Two main components:

○ Sensors collect performance
metrics from Nimbus and JVMs

○ Optimizers (either genetic
algorithms or Bayesian
optimization) analyze the
collected profiles to search the
configuration space

Nimbus JVMs

Sensors

Collect
performance

metrics

Optimizers
Suggested

configuration

Collected
profiles

Search
configuration

space
Classifier

(SVM)

● Extended work (2019):
○ Used a classifier to discard

possibly bad configurations (i.e.
under 80% of max throughput)

39

Machine learning
Wang (2017) ● OrientStream: A framework

that exploits incremental ML
for modeling and predicting
resource usage in DSPEs

● Models various features at
different levels

○ Data
○ Plan
○ Operator
○ Cluster

● Trains an ensemble of 4
models

○ Naive Bayes
○ Hoeffding tree
○ Online bagging
○ Nearest neighbours

● Detects and discards outliers
in training data

● Automatically adjust operator
parallelism based on
thresholds to increase
performance

Nearest neighbours

Online bagging

Naive Bayes

Hoeffding tree

Model ensemble

Cluster

Operator

Plan

Feature levels

Data Abnormal

alarm

Operator

parallelism

adjustment

40

Machine learning
Vaquero (2018) ● An approach that performs

auto-tuning on Spark
Streaming workloads

● Data generation
○ Real
○ Synthetic

● Metrics selection
○ Factor Analysis for configuration

parameter correlation and
importance

○ K-means for clustering
parameters into meaningful
groups

● Metrics Ranking
○ Lasso path analysis to rank

parameter impact on
performance

● Automated tuning
○ RL module explores and selects

configurations

Real

workloads

Synthetic

workloads

Data
generation

Factor

Analysis (FA)

K-means

clustering

Metrics
selection

Lasso

path analysis

Metrics
ranking

RL module

Automated
tuning

Increase/decrease
configuration

values 41

Machine Learning Approach: Pros & Cons

42

• Ability to capture complex
system dynamics

• Independence from system
internals and hardware

• Learning based on real
observations of system
performance

Pros

• Requires large training sets,
which are expensive to collect

• Training from history logs
leads to data under-fitting

• Typically low accuracy for
unseen analytics applications

Cons

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

43

Traffic-aware

scheduler

Adaptive tuning
Xu (2014) ● T-Storm: An extension of

Apache Storm which mainly
concerns the replacement of
the default scheduler to
increase throughput

● The traffic-aware scheduler
aims at minimizing the traffic
between nodes and processes

● Occasionally determine the
number of workers to use for
each topology

○ Assign/re-assign tasks
dynamically

● Consolidation: Minimize the
number of worker nodes as
much as possible

Nimbus
Default

scheduler

Worker Worker Worker Worker

44

Adaptive tuning
Das (2014) ● Batch size is considered one of

the most important tuning
parameters in DSPSs

● This work focuses on
dynamically adapting batch
size in order to minimize
latency

● The control module collects
job stats to learn system
behavior

● The batching module requests
batch intervals and generates
batches accordingly

Key: Keep batch processing time
less than the batch interval

Batching

module

Processing

module

Control

module

Streaming
data

Batch
queue

Job statsBatch intervals

Output
results

45

Adaptive tuning
Fu (2015) ● DRS: Dynamic Resource

Scheduler module
● Dynamically assigns

resources to workloads by
predicting them using
Jackson networks from the
queueing theory

● Employ a greedy algorithm
for finding an optimal
scheduling plan

46

Adaptive tuning
Venkataraman (2017) ● Drizzle: A system that

decouples the coordination
interval from the processing
interval in Spark streaming
that improves:

○ Fault tolerance
○ Adaptability

● Group scheduling: Mitigates
scheduling bottlenecks by
enabling concurrent batch
processing in tasks

● Pre-scheduling: Enable data
exchange between
executors without
contacting the driver

● Optimizations within and
across batches

47

Adaptive tuning
Petrov (2018)

● Collect performance
statistics and utilization
metrics

● Performance modeling
● Decide whether and how to

scale current application to
maximize throughput by
adding/removing

○ Workers
○ Executors

Statistics

Performance

model

Scaling

events

Spark Dynamic App

Handle

scaling

events

Resource

manager

Spark Master Spark Workers

Workers

Executors
48

Adaptive Approach: Pros & Cons

49

• Finds good settings based on
actual task runs

• Able to adjust to dynamic
runtime status

• Works well for ad-hoc
streaming applications

Pros

• Inappropriate configuration
can cause issues (e.g.,
stragglers)

• Neglects efficient resource
utilization in the system

Cons

Outline

● Introduction & Motivation

● Method Taxonomy

● Parameter Tuning Approaches

○ Cost modeling

○ Simulation-based

○ Experiment-driven

○ Machine learning

○ Adaptive tuning

● Comparison of Approaches

● Open Problems & Challenges

50

Comparison of Approaches

Feature Cost modeling Simulation Experiment-driven Machine learning Adaptive

Key modeling technique cost functions simulation search algorithms ML models mixed

Number of parameters modeled some some many many some

System understanding strong strong light no strong

Need for history logs light light strong strong light

Need for data input stats light light no strong light

Real tests to run some no yes yes yes

Time to build model efficient medium slow slow medium

Prediction accuracy medium medium medium high medium

Adapt to workload light light no no adaptive

Adapt to system changes no light no adaptive light

51

Which Approach to Choose

52

•Yes → Machine learning

•No → Cost modeling

Available history logs:

•Change more quickly → Adaptive

•Comparatively stable → Simulation or cost modeling

Workload frequent Changes:

•More time for delivery → Experiment-driven or machine learning

•Less time for delivery → Cost modeling

Project deadline:

•Less parameters → Cost modeling or simulation

•More parameters → Experiment-driven or machine learning

Parameter number:

Open Problems & Challenges

53

Cluster heterogeneity

Cloud computing

Edge computing

Cluster Heterogeneity

● Modern hardware such as NVRAM, GPUs, and FPGAs also calls for

investigation, including its impact on the performance of streaming

applications

Challenges:

● How to configure the number of GPU and CPU cores with the cluster

heterogeneity?

● How to model the performance of the new systems with modern hardware?

54

Cloud Computing

● The proliferation of the Cloud led to new cloud-based data streaming

engines such as Amazon Kinesis and Confluent Cloud

Challenges:

● How to manage performance interactions among multiple tenants?

● How to ensure high scalability and elasticity by dynamically adding more

resources?

● How to navigate the tradeoffs between high performance and fault

tolerance?

55

Edge Computing

● A recent trend in stream-based computing, especially in the

Internet-of-Things (IoT) domain, involves decentralized

processing at the source of the data (i.e., at the edge)

Challenges:

● How to alleviate the pressure of computation at the edge?

● How to manage devices with limited capabilities at the edge?

● How to perform the application reconfigurations at the edge?

56

Conclusion

● Distributed data stream processing systems (DSPSs) such as

Storm, Flink, and Spark Streaming are widely used to process

continuous data streams in (near) real-time

● This tutorial offers a comprehensive review of the state-of-the-

art automatic performance tuning approaches for DSPSs

● Five categories: Cost modeling, Simulation-based, Experiment-

driven, Machine learning, and Adaptive

57

Thanks!

Herodotos Herodotou
Lambros Odysseos
Yuxing Chen
Jiaheng Lu

58https://www2.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/tutorial/icde-2022-tutorial

https://www2.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/tutorial/icde-2022-tutorial

References (Introduction)

● Herodotos Herodotou, Lambros Odysseos, Yuxing Chen, and Jiaheng Lu. Automatic
Performance Tuning for Distributed Data Stream Processing Systems. In Proc. of the 38th
IEEE Intl. Conf. on Data Engineering (ICDE '22), 2022.

● Lambros Odysseos and Herodotos Herodotou. Exploring System and Machine Learning
Performance Interactions when Tuning Distributed Data Stream Applications. In Proc. of
the 38th IEEE Intl. Conf. on Data Engineering Workshops (ICDEW '22), 2022.

● Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. A Survey on Automatic Parameter
Tuning for Big Data Processing Systems. ACM Computing Surveys (CSur), Vol. 53, No. 2,
Article 43, 37 pages, April 2020.

● Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. Speedup Your
Analytics: Automatic Parameter Tuning for Databases and Big Data Systems. Proc. of VLDB
Endowment (PVLDB), Vol. 12, No. 12, August 2019.

59

References (Cost Modeling)

● Sax, Matthias J., Malu Castellanos, Qiming Chen, and Meichun Hsu. "Performance
optimization for distributed intra-node-parallel streaming systems." In 2013 IEEE 29th
International Conference on Data Engineering Workshops (ICDEW’13), pp. 62-69. IEEE,
2013.

● Bedini, Ivan, Sherif Sakr, Bart Theeten, Alessandra Sala, and Peter Cogan. "Modeling
performance of a parallel streaming engine: bridging theory and costs." In Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineering (ICPE’13), pp.
173-184. 2013.

● Bansal, Manu, Eyal Cidon, Arjun Balasingam, Aditya Gudipati, Christos Kozyrakis, and
Sachin Katti. "Trevor: Automatic configuration and scaling of stream processing pipelines."
(CoRR’18) arXiv preprint arXiv:1812.09442 (2018).

● Kalim, Faria, Thomas Cooper, Huijun Wu, Yao Li, Ning Wang, Neng Lu, Maosong Fu et al.
"Caladrius: A performance modelling service for distributed stream processing systems." In
2019 IEEE 35th International Conference on Data Engineering (ICDE’19), pp. 1886-1897.
IEEE, 2019.

60

References (Simulation-based)

● Higashino, Wilson A., Miriam AM Capretz, and Luiz F. Bittencourt. "CEPSim: Modelling and
simulation of Complex Event Processing systems in cloud environments." Future
Generation Computer Systems 65 (FCUS’16) (2016): 122-139.

● Requeno, Jose-Ignacio, José Merseguer, and Simona Bernardi. "Performance analysis of
apache storm applications using stochastic petri nets." In 2017 IEEE International
Conference on Information Reuse and Integration (IRI’17), pp. 411-418. IEEE, 2017.

● Kroß, Johannes, and Helmut Krcmar. "Model-based performance evaluation of batch and
stream applications for big data." In 2017 IEEE 25th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’17), pp.
80-86. IEEE, 2017.

● Lin, Jia-Chun, Ming-Chang Lee, Ingrid Chieh Yu, and Einar Broch Johnsen. "Modeling and
simulation of spark streaming." In 2018 IEEE 32nd International Conference on Advanced
Information Networking and Applications (AINA’18), pp. 407-413. IEEE, 2018.

61

References (Experiment-driven)

● Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal
configuration of stream processing systems." In 2016 IEEE 24th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’16), pp. 39-48. IEEE, 2016.

● Fischer, Lorenz, Shen Gao, and Abraham Bernstein. "Machines tuning machines:
Configuring distributed stream processors with bayesian optimization." In 2015 IEEE
International conference on cluster computing (CLUSTER’15), pp. 22-31. IEEE, 2015.

● Bilal, Muhammad, and Marco Canini. "Towards automatic parameter tuning of stream
processing systems." In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC’17), pp. 189-200. 2017.

● Liu, Xunyun, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao Qu, and Rajkumar Buyya.
"A stepwise auto-profiling method for performance optimization of streaming
applications." ACM Transactions on Autonomous and Adaptive Systems (TAAS’18) 12, no.
4 (2017): 1-33.

62

References (Machine Learning)

● Nikos Zacheilas, Vana Kalogeraki, Nikolaos Zygouras, Nikolaos Panagiotou, and Dimitrios Gunopulos. 2015.

Elastic complex event processing exploiting prediction. In Proceedings of the IEEE International Conference

on Big Data (Big Data’15). IEEE Computer Society, 213–222.

● Teng Li, Jian Tang, and Jielong Xu. 2016. Performance modeling and predictive scheduling for distributed

stream data processing. IEEE Trans. Big Data 2, 4 (2016), 353–364.

● Michael Trotter, Guyue Liu, and Timothy Wood. 2017. Into the storm: Descrying optimal configurations using

genetic algorithms and Bayesian optimization. In Proceedings of the IEEE 2nd International Workshops on

Foundations and Applications of Self* Systems (FAS*W’17). IEEE Computer Society, 175–180.

● Michael Trotter, Timothy Wood, and Jinho Hwang. 2019. Forecasting a storm: Divining optimal configurations

using genetic algorithms and supervised learning. In Proceedings of the International Conference on

Autonomic Computing (ICAC’19). IEEE, 136–146.

● Chunkai Wang, Xiaofeng Meng, Qi Guo, Zujian Weng, and Chen Yang. 2017. Automating characterization

deployment in distributed data stream management systems. IEEE Trans. Knowl. Data Eng. 29, 12 (2017),

2669–2681.

● Luis M. Vaquero and Félix Cuadrado. 2018. Auto-tuning distributed stream processing systems using

reinforcement learning. CoRR abs/1809.05495 (2018).
63

References (Adaptive)

● Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. 2014. T-Storm: Traffic-aware online scheduling
in Storm. In Proceedings of the International Conference on Distributed Computing Systems
(ICDCS’14). IEEE, 535–544.

● Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive stream processing
using dynamic batch sizing. In Proceedings of the 5th ACM Symposium on Cloud Computing
(SoCC’14). ACM, 16:1–16:13.

● Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett, Yin Yang, and Zhenjie Zhang.
2015. DRS: Dynamic resource scheduling for real-time analytics over fast streams. In Proceedings
of the International Conference on Distributed Computing Systems (ICDCS’15). IEEE, 411–420.

● Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael J.
Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast and adaptable stream processing at
scale. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’17). ACM,
374–389.

● Max Petrov, Nikolay Butakov, Denis Nasonov, and Mikhail Melnik. 2018. Adaptive performance
model for dynamic scaling apache spark streaming. Procedia Comput. Sci. 136 (2018), 109–117.

64

