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Modern applications are being built on a

collection of distributed systems
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But:

Running distributed applications

reliably & efficiently is hard 
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My app failed
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My data pipeline is missing SLA  
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My cloud cost is out of control  
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There are many challenges
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Self-driving Systems 

Automate physical data layout

Index and view 
recommendation

Knob tuning, buffer 
pool sizes, etc

Plan 
optimization
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Different Optimization Levels of Self-driving Systems 

The focus of 
this tutorial

Automate physical data layout

Index and view 
recommendation

Knob tuning, buffer 
pool sizes, etc

Plan 
optimization
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Effectiveness of Knob (Parameter) Tuning
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Selected Performance-aware Parameters in PostgreSQL

Parameter Name Description Default value

bgwriter_lru_maxpages Max number of buffers written by the background writer 100

checkpoint_segments Max number of log file segments between WAL checkpoints 3

checkpoint_timeout Max time between automatic WAL checkpoints 5 min

deadlock_timeout Waiting time on locks for checking for deadlocks 1 sec

effective_cache_size Size of the disk cache accessible to one query 4 GB

effective_io_concurrency Number of disk I/O operations to be executed concurrently 1 or 0

shared_buffers Memory size for shared memory buffers 128MB
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Selected Performance-aware Parameters in Hadoop

Parameter Name Description Default value

dfs.block.size The default block size for files stored HDFS 128MB

mapreduce.map.tasks Number of map tasks 2

mapreduce.reduce.tasks Number of reduce tasks 1

mapreduce.job.reduce

.slowstart.completedmaps

Min percent of map tasks completed before scheduling 

reduce tasks

0.05

mapreduce.map.combine

.minspills

Min number of map output spill files present for using the 

combine function

3

mapreduce.reduce.merge.in

mem.threshold

Max number of shuffled map output pairs before initiating 

merging during the shuffle

1000
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Selected Performance-aware Parameters in Spark

Parameter Name Description Default value

spark.driver.cores Number of cores used by the Spark driver process 1

spark.driver.memory Memory size for driver process 1 GB

spark.sql.shuffle.partitions Number of tasks 200

spark.executor.cores The number of cores for each executor 1

spark.files.maxPartitionBytes Max number of bytes to group into one partition
during file reading

128MB

spark.memory.fraction Fraction for execution and storage memory. It may
cause frequent spills or cached data eviction if given a 
low fraction

0.6
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Challenge 1: A Huge Number of Systems
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Challenge 2: Many Parameters in a Single System
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Challenge 3: Diverse Workloads and System Complexity

An example of Spark framework
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Franco Pepe Chef:

“There is no pizza recipe. Every time the dough was 
made there were no scales, recipes, machinery.” 

There is no knob tuning recipe. Every time, we 
need to configure the parameters based on the 
bottleneck of different jobs and environment.

-- VLDB 2019 tutorial
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Running Examples of Parameter Tuning (Hadoop)*

Workloads 

➢ Terasort: Sort a terabyte of data

➢ N-gram: Compute the inverted list of N-gram data

➢ PageRank: Compute pagerank of graphs

Hadoop platform with MapReduce

* Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, Chen Wang:
MRTuner: A Toolkit to Enable Holistic Optimization for MapReduce Jobs. 
PVLDB 7(13): 1319-1330 (2014)
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Running Examples of Parameter Tuning (Hadoop)

Problem: Given a MapReduce (or Spark) job with input data and running 

cluster, we want to find the setting of parameters that optimize the execution 

time of the job (i.e., minimize the job execution time)
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Tuned Key Parameters in Hadoop

Parameter Name Description

MapInputSplit Split number for map jobs

MapOutputBuffer Buffer size of map output

MapOutputCompression Whether the map output data is compressed

ReduceCopy Time to start the copy in Reduce phase  

ReduceInputBuffer Input buffer size of Reduce

ReduceOutput Reduce output block size
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Impact of Parameters on Selected Jobs

TeraSort Job N-gram Job PageRank Job
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Comparison between Hadoop-X and MRTuner with 
Different Parameters
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50 Years of Knob Tuning

Rule-based & 
DBA guideline 
(1960s)

Cost-model 
(1970s)

Experiments-driven 
(1980s)

Machine learning (2007)

Adaptive model 
(2006)

Simulation 
(2000s)
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Classification of Existing Approaches

Approach Main Idea

Rule-based Based on the experience of human experts

Cost Modeling Using statistical cost functions

Simulation-based Modular or complete system simulation

Experiment-driven Execute an experiment with different parameter settings

Machine Learning Employ machine learning methods

Adaptive Tune configuration parameters adaptively
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Rule-based Approach

➢ Assist users based on the experience of human experts

Parameter Name Default Description Recommendation 

dfs.replication in 

HDFS

3 Lower it to reduce 

replication cost. 

Higher replication can make 

data local to more workers, 

but more space overhead

IF (Running time is 

the critical goal and 

enough space)

Set  5

Otherwise

Set  3 
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Cost Modeling Approach

➢ Build performance prediction models by using statistical cost functions

Cost Constants

Cost Formulas

Cost Estimation

Operations

Parameter Values

Statistics
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Simulation-based Approach

➢ Build performance models based on modular or complete simulation
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Experiment-driven Approach

➢ Execute the experiments repeatedly with different parameter settings, 
guided by a search algorithm

Input knobs

Recommended knobs

Goal

Experiments

Exploit knobs
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Machine Learning Approach

➢ Establish performance models by employing machine learning methods 

➢ Consider the complex system as a whole and assume no knowledge of 
system
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Adaptive Approach

➢ Tune parameters adaptively while an application is running

➢ Adjust the parameter settings as the environment changes

Online

CLOT (2006) strategy

New query

New environment
Self-tuning Module

Recommend 

index selection
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Outline 

Motivation and Background

History and Classification

Parameter Tuning on Databases

Parameter Tuning on Big Data Systems

Applications of Automatic Parameter Tuning

Open Challenges and Discussion
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What and How to Tune?

➢ What to configure?
❖ Which parameters (knobs)?

❖ Which are most important?

➢ How to tune (to best throughput)?
❖ Increase buffer size?

❖ More parallelism on writing?

I am a database 

I am running queries

Figure. Tuning guitar knobs to right notes (frequencies)

Run faster?
Higher throughput?



VLDB 2019           Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big Data Systems 34

What to Tune – Some Important Knobs for throughput

Parameter Name Brief Description and Use Deafult

bgwriter_delay Background writer’s delay between activity rounds 200ms

bgwriter_lru_maxpages Max number of buffers written by the background 
writer

100

checkpoint_segments Max number of log file segments between WAL 
checkpoints

3

checkpoint_timeout Max time between automatic WAL checkpoints 5min

deadlock_timeout Waiting time on locks for checking for deadlocks 1s

default_statistics_target Default statistics target for table columns 100

effective_cache_size Effective size of the disk cache accessible to one 
query

4GB

shared_buffers Memory size for shared memory buffers 128MB
Memory
Cache

Timeout
Settings

Threads
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What are the Important Parameters and How to Choose

➢ Affect the performance most (manually)

❖ Based on expert experiences

❖ Default documentation

If you want higher throughput, 
better tuning memory-related 

parameters

Performance-sensitive 
parameters are important! 

Parameters have strong 
correlation to performance are 

important! 
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What are the Important Parameters and How to Choose

➢ Affect the performance most 

➢ Strongest correlation between parameters and objective function (model)

❖ Linear regression model for independent parameters:

❑ Regularized version of least squares – Lasso (OtterTune 2017)

✔ Interpretable, stable, and computationally efficient with higher dimensions

❖ Deep learning model (CBDTune 2019)

❑ The important input parameters will gain higher weights in training

Weights Knobs
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How to Tune – Key Tuning Goals

➢ Avoidance: to identify and avoid error-prone configuration settings   

➢ Ranking: to rank parameters according to the performance impact

➢ Profiling: to classify and store useful log information from previous runs

➢ Prediction: to predict the database or workload performance under 
hypothetical resource or parameter changes

➢ Tuning: to recommend parameter values to achieve objective goals
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How to Tune – Tuning Methods
Methods Approach Methodology Target Level

Rule-based SPEX (2013) Constraint inference Avoidance

Xu (2015) Configuration navigation Ranking

Cost-model STMM (2006) Cost model Tuning

Simulation-
based

Dushyanth (2005) Trace-based simulation Prediction

ADDM (2005) DAG model & simulation Profiling, tuning

Experiment
driven

SARD (2008) P&B statistical design Ranking

iTuned (2009) LHS & Guassian Process Profiling, tuning

Machine
Learning

Rodd (2016) Neural Networks Tuning

OtterTune (2017) Guassian Process Ranking, tuning

CDBTune (2019) Deep RL Tuning

Adaptive COLT (2006) Cost Vs. Gain analysis Profiling, tuning
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Relational Database Tuning Methods

Rule-based

Cost Modeling

Simulation-based

Experiment-driven

Machine Learning

Covered #knobs

Training cost

Time

Rule-based

Simulation-based

Experiment-driven

Machine Learning

Adaptive

Cost Modeling

Figure. Required expert knowledge on systemFigure. Developing trend: putting more 

training cost to uncover more knobs

2005 2017
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Tuning Method: Rule-based

➢ Tuning based on rules derived from DBAs’ expertise, experience, 
and knowledge, or Rule of Thumb default recommendation

Expert

Guarantee cache 

memory to accelerate 

queries …

Rule of Thumb

Better not change the 

deadlock timeout if …

Documents

Default settings work 

most of the cases …Rules

Trusted

Parties
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➢ A cost model establishes a performance model by cost functions 
based on the deep understanding of system components

Cost Model

41

Tuning Method: Cost Modeling

Cost Constants

Cost Formulas
Cost Estimate

Operations

Parameter Values

Statistics
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Tuning Method: Cost Modeling (STMM)

➢ STMM: Adaptive Self-Tuning Memory in DB2 (2006)
❖ Reallocates memory for several critical components(e.g., compiled 

statement cache, sort, and buffer pools)
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Tuning Method: Simulation-based

➢ A simulation-based approach simulates workloads in one 
environment and learns experience or builds models to predict 
the performance in another.

Running job here is (1) expensive 

or (2) slowdown concurrent jobs or 

(3)…

Simulate it in small 

environment with tiny 

portion of data …

Often product environment Often test environment
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Tuning Method: Experiment-driven 

➢ An experiment-driven approach relies on repeated executions of 
the same workload under different configuration settings towards 
tuning parameter values

Input knobs

Recommended knobs

Goal

Experiments

Exploit knobs

Classic paper: Tuning Database Configuration Parameters with iTuned. 2009
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Tuning Method: Machine Learning

➢ Machine Learning (ML) approaches aim to tune parameters 
automatically by taking advantages of ML methods.

ML Training

Input knobs

Recommended knobs

Goal

ML Model

Training logs

Actual run logs
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Tuning Method: Machine Learning (OtterTune 2017)

➢ Factor Analysis: transform high dimension parameters to few factors

➢ Kmeans:  Cluster distinct metrics

➢ Lasso: Rank parameters

➢ Gaussian Process: Predict and tune performance

Figure. OtterTune system architecture
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Tuning Method: Machine Learning (CDBTune 2019)

➢ Reinforcement learning
▪ State: knobs and metrics

▪ Reward: performance change

▪ Action: recommended knobs

▪ Policy: Deep Neural network

➢ Key idea
▪ Feedback: try-and-error method
▪ Recommend -> good/bad

▪ Deep deterministic policy gradient
▪ Actor critic algorithm

Figure. CDBTune Deep deterministic policy gradient

Reward: Throughput and latency

performance change Δ from time t − 1 

and the initial time to time t
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Online

48

Tuning Method: Adaptive 

➢ An adaptive approach changes parameter configurations online as 
the environment or query workload changes

Figure. CLOT (2006) strategy

New query

New environment
Self-tuning Module

Recommend 

index selection
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The Differences of Tuning Database & Big Data Systems in 
research papers

Relational Database Big Data System

Parameters More parameters on memory More parameters on vcores

Resource Often fixed resources Now more varying resources

Scalability Often single machine Often many machines in a 
distributed environment

Metrics Throughput, latency Time, resource cost
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Ecosystems for Big Data Analytics

MapReduce-based Systems Spark-based Systems

Resource Managers

Distributed File Systems
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Executing Analytics Workloads

Goal:
Execute MapReduce workload

Decisions:

Task

Task
Task

In
p

u
t

O
u

tp
u

t

Goal: 
Execute an analytics workload in < 2 hours 

➢ Task parallelism
➢ Use compression
➢ …

➢ Container settings
➢ Executor cores
➢ …

➢ Number of nodes
➢ Machine specs
➢ …

C C

NMDN

C C

NMDN

R
es

o
u

rc
es

P
la

tf
o

rm
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Effect of Job-level Configuration Parameters

➢ 190+ parameters in Hadoop, 15-20 impact performance

➢ 200+ parameters in Spark, 20-30 impact performance

Scenario: 2 MapReduce jobs, 50GB, 16-node EC2 cluster

Word Co-occurrence Terasort

Two-dimensional projections of a multi-dimensional surface
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Tuning Challenges

➢ High-dimensional space of configuration parameters

➢ Non-linear effect of hardware/applications/parameters on performance

➢ Heavy use of programming languages (e.g., Java/Python)

➢ Lack of schema & statistics for input data residing in files

➢ Terabyte-scale data cycles



VLDB 2019           Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big Data Systems 56

Applying Cost-based Optimization
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Applying Cost-based Optimization

Profile

Collect 
concise & 
general 
summaries 
of execution

Predict

Estimate 
impact of 
hypothetical 
changes on 
execution

Optimize
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Profiling MapReduce Job Execution

⮚ Use dynamic instrumentation 

❖ Support unmodified 
MapReduce programs

⮚ Use sampling techniques 

❖ Minimize overhead of 
profiling

Dataflow

Statistics

Dataflow

Counters

Cost

Statistics

Cost

Counters

MapReduce

Job Execution
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Predicting Job Profiles in Starfish

Dataflow
Statistics

Dataflow
Counters

Cost
Statistics

Cost
Counters

Dataflow
Statistics

Dataflow
Counters

Cost
Statistics

Cost
Counters

Cardinality
Models

Relative Black-box 
Models

Analytical
Models

Analytical
Models
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Job Optimization & Resource Provisioning

Dataflow
Statistics

Dataflow
Counters

Cost
Statistics

Cost
Counters

Cluster 
Resources r2

Input
Data d2

Job Optimizer

Enumerate 
Independent 

Subspaces

Recursive 
Random Search

Input
Data d2

Elastisizer

Enumerate 
Cloud Resource 

Options
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MapReduce Cost Modeling Approaches

Approach Modeling Optimization Target Level

Starfish (2011-13) Analytical & relative 
black box models

Recursive Random 
Search

Job, Platform, 
Cloud

ARIA (2011) Analytical models Lagrange Multipliers Job, Platform

HPM (2011) Scaling models & LR Brute-force Search Platform

Predator (2012) Analytical models Grid Hill Climbing Job

MRTuner (2014) PTC analytical models Grid-based search Job, Platform

CRESP (2014) Analytical models & LR Brute-force Search Platform, Cloud

MR-COF (2015) Analytical models & 
MRPerf simulation

Genetic Algorithm Job

IHPM (2016) Scaling models & LWLR Lagrange Multipliers Platform, Cloud
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Spark Cost Modeling Approaches

➢ Focus:

➢ Unique features:

❖ Ernest (2016): Focus on machine learning Spark applications

❖ Assurance (2017): Mixes white-box models with simulation

❖ DynamiConf (2017): Optimizes degree of parallelism for tasks

Predict performance on 
large clusters, full data

Profile using small 
clusters, data samples 
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Cost Modeling Approach: Pros & Cons

Pros Very efficient for predicting performance

Good accuracy in many (not complex) scenarios

Cons Hard to capture complexity of system internals & 
pluggable components (e.g., schedulers)

Models often based on simplified assumptions

Not effective on heterogeneous clusters
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Simulation-based Approach

➢ Key Objective: Accurately predict MapReduce job performance at fine 
granularity

❖ Sorry, no fully-fledged Spark simulator available at this point!

➢ Use cases:

❖ Find optimal configuration settings

❖ Find cluster settings based on user requirements

❖ Identify performance bottlenecks

❖ Test new pluggable components (e.g., schedulers)

➢ Common technique: discrete event simulation
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HSim: Hadoop Simulator

Detailed fine-grained execution trace

Slave nodeMaster node

JobTracker TaskTracker

MapperSim ReducerSimTask

Heartbeat

Job Reader Cluster Reader

Job Specs
- Data properties
- Conf parameters

Cluster Specs
- Network topology
- Node resources
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Comparison of Hadoop Simulators

Simulator Network 
Traffic

Hardware 
Properties

MapReduce 
Execution

MapReduce 
Scheduling

Conf
Parameters

MRPerf (2009) Yes (ns-2) Yes Task sub-phases No Only few

MRSim (2010) Yes (GridSim) Yes Task sub-phases No Several

Mumak (2009) No No Only task level No Only few

SimMR (2011) No No Task sub-phases
FIFO, 

Deadline
Only few

SimMapRed 
(2011)

Yes (GridSim) Yes Task sub-phases Several Only few

HSim (2013) Yes (GridSim) Yes Task sub-phases FIFO, FAIR Several



VLDB 2019           Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big Data Systems 67

Simulation-based Approach: Pros & Cons

Pros High accuracy in simulating dynamic system 
behaviors

Efficient for predicting fine-grained performance

Cons Hard to comprehensively simulate complex 
internal dynamics

Unable to capture dynamic cluster utilization

Not very efficient for finding optimal settings
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General Experiment-driven Architecture

[Sample] 
Input Data

MR/Spark 
Application

Hadoop/Spark Cluster

Parameter
Search Engine

Best 
Parameter

Settings

Application 
Executor

Conf

Performance 
Analyzer

Logs
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Experiment-driven Approaches

[Sample] 
Input Data

MR/Spark 
Application Best 

Parameter
Settings

Performance 
Analyzer

Application 
Executor

Conf

Parameter
Search Engine

Panacea
(2012)

• Grid search on 
independent 
subspaces

Gunther
(2013)

• Genetic search 
algorithm

Petridis
(2016)

• Search tree 
based on 
heuristics

AutoTune
(2018)

• Multiple bound 
and search 
algorithm
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Gounaris (2018) Exp-driven Approach

Test all candidate configurations 
and keep best one

Use benchmarking applications 
(sort-by-key, shuffling, k-means)

Test parameter values separately and 
in pairs (117 runs for 15 parameters)

Create candidate configurations (9 
complex parameter configurations)

Offline

Online

Spark 
Application
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Experiment-driven Approach: Pros & Cons

Pros Finds good settings based on real test runs on real 
systems

Works across different system versions and 
hardware

Cons Very time consuming as it requires multiple actual 
runs

Not cost effective for ad-hoc analytics applications
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Machine Learning (ML) Approaches

➢ Three categories of ML approaches:

1) Build a historical store and use similarity measures

2) Perform clustering and ML modeling per cluster

3) Train and utilize a ML model per application

Offline Phase

Historical 
data

Output

Feature 
selection

Modeling

Online Phase

New
job

Best 
conf

Prediction

Optimization
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ML Approaches with Historical Stores

Offline
Phase

MR Jobs

Execute & 
collect data

Store: <Features, Execution time>

Online
Phase

Kavulya (2010) PStorm (2014)

New MR Job

Similar Jobs & Execution Times

Execution Time Prediction

k-Nearest-Neighbors

Locally-weighted 
Linear Regression

MR Jobs

Execute & 
collect data

Store: <Features, Job profile>

New MR Job

Job Features

New Job Profile

Sample execution

XGBoost probing

Optimal Configuration

Starfish Optimizer
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ML Approaches with Clustering

Offline
Phase

Online
Phase

AROMA (2012) PPABS (2013)

Job Utilization Data

k-mediod Clustering

Job Clusters

SVM Model per Cluster

Support Vector Machine

New MR Job

Job Utilization Data

SVM Model

Sample execution

Find cluster

Optimal Resources & Configuration

Pattern Search algorithm

New MR Job

Job Utilization Data

Sample execution

Find cluster

Optimal Configuration

Job Utilization Data

k-means++ Clustering

Job Clusters

Optimal Conf per Cluster

Simulated Annealing
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ML Approaches with App Modeling

Offline
Phase

Online
Phase

Sample executions

MR Job / Spark App

Training Data

Machine Learning Model

Training model *

Guolu
(2016)

* Decision Tree 
(C5.0)

+ Recursive 
Random Search

Hernandez
(2017)

* Boosted 
Regression Trees

+ Heuristic 
algorithm

Chen
(2015)

* Tree-based 
Regression

+ Random Hill 
Climbing

RFHOC
(2016)

* Random-Forest 
Approach

+ Genetic 
Algorithm

MR Job / Spark App

Execution Time Prediction

Employ ML model

Optimal Configuration

Search algorithm +
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Machine Learning Approach: Pros & Cons

Pros Ability to capture complex system dynamics

Independence from system internals and hardware

Learning based on real observations of system 
performance

Cons Requires large training sets, which are expensive to 
collect

Training from history logs leads to data under-
fitting

Typically low accuracy for unseen analytics 
applications
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Adaptive Approach

➢ Key idea: Track execution of a job and change its configuration in an 
online fashion in order to improve performance

Map 
Wave 1

Map 
Wave 3

Map 
Wave 2

Reduce
Wave 1

Reduce
Wave 2

Shuffle

1. Collect statistics from previous wave(s)
2. Set better configurations for next wave *
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Adaptive Approach

➢ Key idea: Track execution of a job and change its configuration in an 
online fashion in order to improve performance

Map 
Wave 1

Map 
Wave 3

Map 
Wave 2

Reduce
Wave 1

Reduce
Wave 2

Shuffle

1. Collect statistics from previous wave(s)
2. Set better configurations for next wave *

MROnline
(2014)

* Gray-box hill 
climbing

Ant
(2014)

* Genetic 
Algorithm

JellyFish
(2015)

* Model-based 
hill climbing
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The KERMIT (2016) Approach

Master Node

Slave Node

Node 
Manager

Slave Node

Node 
Manager

Slave Node

Node 
Manager

YARN
Resource
Manager

Container

Spark AppContainer

Resource
requests

Container

MR App

Container

Resource
requests

KERMIT

1. Observe container 
performance

2. Adjust memory & CPU 
allocations to maximize 
performance
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Adaptive Approach: Pros & Cons

Pros Finds good settings based on actual task runs

Able to adjust to dynamic runtime status

Works well for ad-hoc analytics applications

Cons Only applies to long-running analytics applications

Inappropriate configuration can cause issues (e.g., 
stragglers)

Neglects efficient resource utilization in the whole 
system
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Outline 

Motivation and Background

History and Classification

Parameter Tuning on Databases

Parameter Tuning on Big Data Systems

Applications of Automatic Parameter Tuning

Open Challenges and Discussion
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Auto Parameter Tuning in Database Systems

➢ Oracle Self-driving Database

❖ Automatically set various memory parameters and use of 
compression using machine learning

➢ IBM DB2 Self-tuning Memory Manager

❖ Dynamically distributes available memory resources among 
buffer pools, locking memory, package cache, and sort memory

➢ Azure SQL Database Automatic Tuning

❖ Memory buffer settings, index management, plan choice 
correction
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Auto Parameter Tuning in Big Data Systems

➢ Databricks Optimized Autoscaling

❖ Automatically scale number of executors in Spark up and 
down

➢ Spotfire Data Science Autotuning

❖ Automatically set Spark parameters for number and 
memory size of executors

➢ Sparklens: Qubole’s Spark Tuning Tool

❖ Automatically set memory of Spark executors
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Auto Parameter Tuning with Unravel
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spark.driver.cores 2

spark.executor.cores
…

10

spark.sql.shuffle.partitions 300

spark.sql.autoBroadcastJoinThreshold 20MB

…

SKEW('orders', 'o_custId') true

spark.catalog.cacheTable(“orders") true

…

P
ER

FO
R

M
A

N
C

E
85

Today, tuning is often by trial-and-error
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A New World

INPUTS

1. App = Spark Query

2. Goal = Speedup

“I need to make this app faster”
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TIME

A
P

P
 D

U
R

A
T

IO
N

In blink of an eye, user 
gets recommendations 
to make the app 30% 
faster

As user finishes 
checking email, she 
has a verified run 
that is 60% faster

User comes back from 
lunch. A verified run 
that is 90% faster

90% 

faster!

87

A New World
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Response Surface Methodology Reinforcement Learning

88
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Autotuning Workflow

Monitoring

Data

Historic Data

&

Probe Data

Recommendation

Algorithm

Cluster Services On-premises and Cloud

App,Goal

Orchestrator

Xnext

Probe Algorithm



VLDB 2019           Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big Data Systems 90

Outline 

Motivation and Background

History and Classification

Parameter Tuning on Databases

Parameter Tuning on Big Data Systems

Applications of Automatic Parameter Tuning

Open Challenges and Discussion
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Putting it all Together

Approach Pros Cons
Cost Modeling Very efficient for predicting performance

Good accuracy in many (not complex) scenarios
Very efficient for predicting performance
Good accuracy in many (not complex) scenarios

Hard to capture complexity of system internals & pluggable 
components (e.g., schedulers)
Models often based on simplified assumptions
Not effective on heterogeneous clusters

Simulation-based High accuracy in simulating dynamic system behaviors
Efficient for predicting fine-grained performance

Hard to comprehensively simulate complex internal dynamics
Unable to capture dynamic cluster utilization
Not very efficient for finding optimal settings

Experiment-driven Finds good settings based on real test runs on real 
systems
Works across different system versions and hardware

Very time consuming as it requires multiple actual runs
Not cost effective for ad-hoc analytics applications

Machine Learning Ability to capture complex system dynamics
Independence from system internals and hardware
Learning based on real observations of system 
performance

Requires large training sets, which are expensive to collect
Training from history logs leads to data under-fitting
Typically low accuracy for unseen analytics applications

Adaptive Finds good settings based on actual task runs
Able to adjust to dynamic runtime status
Works well for ad-hoc analytics applications

Only applies to long-running analytics applications
Inappropriate configuration can cause issues (e.g., stragglers)
Neglects efficient resource utilization in the whole system
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Open Challenges

Clusters are becoming heterogeneous in nature, 
both for compute and storage

The proliferation of Cloud leads to multi-
tenancy, overheads, perf interaction issues

Real-time analytics pushes boundaries on latency 
requirements and combination of systems

Ensuring good 
and robust 
system 
performance at 
scale poses new 
challenges



Thank you!
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