
Coo: Partial Order Pair Consistency Model
Haixiang Li and Yuxing Chen

{blueseali,axingguchen}@tencent.com

1 PRELIMINARY

This section provides the preliminary that will be used and extended

in the following section.

Objects, Operations, Transactions. We consider storing data ob-

jects 𝑂𝑏 𝑗 = {𝑥,𝑦, ...} in a database. Operations are divided into

two groups, i.e., object-oriented operations and state-expressed

operations. Object-oriented operations are operations on objects

by reading or writing. Let𝑂𝑝𝑖 describe the possible invocations set:

reading or writing an object by transaction 𝑇𝑖 . State-expressed

operations are operations to express states of transactions, con-

sisting of Commit (C) and Abort (A). Transaction is a group of

operations, interacting objects, with or without a state-expressed

operation at the end, representing a committed or an active state.

We use subscripts to represent the transaction number. For example,

𝑂𝑝𝑖 [𝑥𝑛] is 𝑥-oriented operations by transaction 𝑇𝑖 ; 𝐶𝑖 and 𝐴 𝑗 are

the committed and abort operations by 𝑇𝑖 and 𝑇𝑗 , respectively.

Schedules. An Adya [2] history𝐻 comprises a set of transactions

𝑇 on objects, an order 𝐸 over operations𝑂𝑝 in𝑇 . The 𝐸 is persevered

the order within a transaction and obeyed the object version order

<𝑠 . A schedule 𝑆 is a prefix of 𝐻 .

Example 1.1. We show an example of a schedule 𝑆1 in the fol-

lowing:

𝑆1 = 𝑅1 [𝑥0] 𝑅3 [𝑥0]𝑊1 [𝑦1] 𝑅3 [𝑦1] 𝐶3𝑊2 [𝑥1] 𝑅1 [𝑦1] 𝐴1 . (1)

which involves three transactions, where𝑇1 = 𝑅1 [𝑥]𝑊1 [𝑦]𝑅1 [𝑦]𝐴1,

𝑇2 =𝑊2 [𝑥], and 𝑇3 = 𝑅3 [𝑥]𝑅3 [𝑦]𝐶3 are aborted, active, and com-

mitted transactions respectively. The set of operations is 𝑂𝑝 (𝑆1) =
{𝑅1 [𝑥], 𝑅3 [𝑥],𝑊1 [𝑦], 𝑅3 [𝑦],𝑊2 [𝑥], 𝑅1 [𝑦]}. For operations on the

same object, we have the version order, e.g., 𝑅1 [𝑥0] <𝑠 𝑊2 [𝑥1].
Note we don’t have version order between two reads, e.g., (𝑅1 [𝑥0],
𝑅3 [𝑥0]) or between different objects, e.g, (𝑅3 [𝑥0],𝑊1 [𝑦1]), meaning

reversing these operations may be an equivalent schedule.

Conflict dependency and Conflict graph. Every history is associ-

ated with a conflict graph (also called directed serialization graph)

[6, 17], where nodes are committed transactions and edges are the

conflicts (read-write, write-write, or write-read) between transac-

tions. The conflict graph is used to test if a schedule is serializable.

Intuitively, an acyclic conflict graph indicates a serializable sched-

ule, thus the consistent execution and final state. Figure 1(a) depicts

the graphic representation of 𝑆1.

2 CONSISTENCY MODEL

This section introduces a new consistency model called Coo that

can correlate all data anomalies. Specifically, we first proposed

Partial Order Pair (POP) Graph, which also considers state-expressed
operations. We then show any schedule can be represented by a

POP graph and our checker can check an anomaly via its POP cycle.

Lastly, our generator constructs both centralized and distributed

test cases based on POP cycles for the evaluation.

2.1 Partial Order Pair Graph

Adya’s model introduced some non-cycle anomalies [2, 3] like Dirty

Reads and Dirty Write. The reason is that they did not consider

state-expressed operations in conflict graph, yet these operations

sometimesmay be equivalent to object-oriented ones [10].We strive

to map all anomalies via cycles by considering these state-expressed

operations. We first formally define POPs as extended conflicts in

the following.

Definition 2.1. Partial Order Pair (POP). Let𝑇𝑖 ,𝑇𝑗 be trans-

actions in a Schedule 𝑆 and 𝑇𝑖 ≠ 𝑇𝑗 . A Partial Order Pair (POP) is

the combination of object-oriented and state-expressed operations

from 𝑇𝑖 and 𝑇𝑗 and satisfies:

• both transactions operate on the same object;

• at least one operation affects the object version (a write or

a rollback of a write).

Lemma 2.2. There exist at most 9 POPs in an arbitrary schedule,
i.e.,𝑃𝑂𝑃 = {𝑊𝑊,𝑊𝑅, 𝑅𝑊 ,𝑊𝐶𝑊 ,𝑊𝐶𝑅, 𝑅𝐶𝑊 , 𝑅𝐴,𝑊𝐶,𝑊𝐴}.

Proof. The proof can be trivially achieved by enumerating all

possible combinations of object-oriented and state-expressed oper-

ations. Let 𝑇𝑖 ,𝑇𝑗 be transactions in a Schedule 𝑆 and 𝑝𝑖 ∈ 𝑇𝑖 with

𝑞 𝑗 ∈ 𝑇𝑗 being object-oriented operations that access the same ob-

ject, (𝑝𝑖 , 𝑞 𝑗 ) ∈ {𝑊𝑖𝑊𝑗 ,𝑊𝑖𝑅 𝑗 , 𝑅𝑖𝑊𝑗 }. The following is a list of all

possible combinations.

1. 𝑝𝑖 − 𝑞 𝑗 : Both transactions 𝑇𝑖 and 𝑇𝑗 are still active.

The transaction 𝑇𝑖 ends before 𝑇𝑗 :

2. 𝑝𝑖 −𝐶𝑖 − 𝑞 𝑗 : 𝑇𝑖 commits before 𝑞 𝑗 ;

3. 𝑝𝑖 −𝐴𝑖 − 𝑞 𝑗 : 𝑇𝑖 aborts before 𝑞 𝑗 ;

4. 𝑝𝑖 − 𝑞 𝑗 −𝐶𝑖 : 𝑇𝑖 commits after 𝑞 𝑗 ;

5. 𝑝𝑖 − 𝑞 𝑗 −𝐴𝑖 : 𝑇𝑖 aborts after 𝑞 𝑗 ;

The transaction 𝑇𝑖 ends after 𝑇𝑗 :

6. 𝑝𝑖 − 𝑞 𝑗 −𝐶 𝑗 : 𝑇𝑗 commits after 𝑝𝑖 ;

7. 𝑝𝑖 − 𝑞 𝑗 −𝐴 𝑗 : 𝑇𝑗 aborts after 𝑝𝑖 .

The operation 𝑝𝑖 will not affect the operation 𝑞 𝑗 in combination

3 due to the timely rollback of 𝑇𝑖 . So does combination 7. We ob-

tain 15 cases by substituting {𝑊𝑖𝑊𝑗 , 𝑅𝑖𝑊𝑗 ,𝑊𝑖𝑅 𝑗 } into (𝑝𝑖𝑞 𝑗 ) of the
remaining 5 combinations.

Among them,𝑊𝑖𝑊𝑗𝐶 𝑗 and𝑊𝑖𝑊𝑗 both have the identical effect

of modifying the accessing object by𝑊𝑗 , we group them together

as POP𝑊𝑊 . Similarly, we use POP𝑊𝑅 to represent𝑊𝑖𝑅 𝑗 and

𝑊𝑖𝑅 𝑗𝐶𝑖 and POP 𝑅𝑊 to represent 𝑅𝑖𝑊𝑗 and 𝑅𝑖𝑊𝑗𝐶 𝑗 . Because read

operations are not affected by a commit or abort, we put𝑅𝑖𝑊𝑗𝐴𝑖 and

𝑅𝑖𝑊𝑗𝐶𝑖 into 𝑅𝑊 . Similarly, we put𝑊𝑖𝑅 𝑗𝐶 𝑗 into𝑊𝑅. Three cases

with committed of 𝑇𝑖 , i.e.,𝑊𝑖𝐶𝑖𝑅 𝑗 [𝑥],𝑊𝑖𝐶𝑖𝑊𝑗 [𝑥], and 𝑅𝑖𝐶𝑖𝑊𝑗 [𝑥],
are specified as types𝑊𝐶𝑅,𝑊𝐶𝑊 , and 𝑅𝐶𝑊 , respectively.

Finally, we have three special combination cases, i.e.,𝑊𝑖𝑅 𝑗𝐴𝑖 ,

𝑊𝑖𝑊𝑗𝐶𝑖 , and 𝑊𝑖𝑊𝑗𝐴𝑖 , that are more complex as they have two

version changing states. As for𝑊𝑖𝑅 𝑗𝐴𝑖 , we have first changing

state by𝑊𝑖𝑅 𝑗 then second changing state by 𝑅 𝑗𝐴𝑖 .𝑊𝑖𝑅 𝑗 belongs to



Haixiang Li and Yuxing Chen

T3

T2T1
R1W2[x]

W1R3[y]
R3W2[x]

R3A1[y]

T3

T2T1
R1W2[x]

W1R3[y]
R3C3W2[x]

(a) (b)

Figure 1: Comparison of (a) conflict and (b) POP graphs.

POP𝑊𝑅 and 𝑅 𝑗𝐴𝑖 [𝑥] belongs to new POP 𝑅𝐴. Likewise,𝑊𝑖𝑊𝑗𝐶𝑖
has𝑊𝑊 and𝑊𝐶 POPs, and𝑊𝑖𝑊𝑗𝐴𝑖 has𝑊𝑊 and𝑊𝐴 POPs.

In summary, these 15 combination cases are grouped into 9 types

POPs, i.e.,𝑊𝑊,𝑊𝑅, 𝑅𝑊 ,𝑊𝐶𝑊 ,𝑊𝐶𝑅, 𝑅𝐶𝑊 , 𝑅𝐴,𝑊𝐶,𝑊𝐴. □

Note that RA, WA, and WC are from the combination of a cycle,

meaning RA, WA, and WC existed only when the cycle already

existed, and this cycle is a 2-transaction cycle on a single object.

Let F : 𝑃𝑂𝑃 (𝑆) → 𝑇 (𝑆) ×𝑇 (𝑆) be the map between POPs and the

transaction orders, e.g., F (𝑊𝑖𝐶𝑖𝑅 𝑗 [𝑥]) = (𝑇𝑖 ,𝑇𝑗 ). In terms of POPs

and their orders, we can define POP graphs.

Definition 2.3. Partial Order Pair Graph (POP graph).

Let 𝑆 be a schedule. A graph 𝐺 (𝑆) = (𝑉 , 𝐸) is called Partial Or-

der Pair Graph (POP graph), if vertices are transactions in 𝑆 and

edges are orders in POPs derived from 𝑆 , i.e (i) 𝑉 = 𝑇 (𝑆); (ii)
𝐸 = F (𝑃𝑂𝑃 (𝑆)).

Conflict and POP graphs differ in edges and expressiveness. Ex-

ample 2.4 exemplifies the distinction between them.

Example 2.4. Continuing Example 1.1, we obtain objects𝑂𝑏 𝑗={𝑥,
𝑦}, and operations 𝑂𝑝 [𝑥]={𝑅1 [𝑥0]𝑅3 [𝑥0]𝐶3𝑊2 [𝑥1]} and 𝑂𝑝 [𝑦]=
{𝑊1 [𝑦1]𝑅3 [𝑦1]𝐶3𝑅1 [𝑦1]𝐴1} from 𝑆1. Note that we don’t put 𝐴1

in 𝑂𝑝 [𝑥] as they don’t have a write on object 𝑥 by 𝑇1. We derive

POP from these operations, i.e. {𝑅1𝑊2 [𝑥], 𝑅3𝐶3𝑊2 [𝑥], 𝑊1𝑅3 [𝑦],
𝑅3𝐴1 [𝑦]}. The Conflict graph and the POP graph for 𝑆1 are shown

in Figure 1. Note that edges from 𝑇3 to 𝑇2 are different in conflict

(RW) and POP (RCW) graph. This time, by a POP graph, the Dirty

Read is expressed by a cycle formed by 𝑇1 and 𝑇3.

Lemma 2.5. Arbitrary schedules can be represented by POP graphs.

Proof. Given an arbitrary schedule 𝑆 with 𝑂𝑝 (𝑆) being the set

of operations by transactions T = {𝑇1,𝑇2, . . . ,𝑇𝑛}. First, we can

derive sets of operations for variables from 𝑆 , {𝑂𝑃 [𝑥] |𝑥 ∈ 𝑂𝑏 𝑗 (𝑆)}.
Then we can find all the combination cases in each object operation

set𝑂𝑝 [𝑥]. Finally, we classify them into POPs referred to the proof

of Lemma 2.2. Through the above method, we can get the POP

set 𝑃𝑂𝑃 (𝑆) corresponding to the schedule 𝑆 . Then, by F , we get

the ordering between transactions based on POPs. We can model

POP graphs using the transactions set and the dependent orders

between transactions. □

2.2 Consistency and Consistency Check

With POP cycles, we now are ready to define data anomalies, then

define consistency with no data anomaly.

Definition 2.6. Data Anomaly. The schedule exists a data

anomaly exists if the represented POP graph has a cycle.

The definition of data anomalies by POP graphs differs from con-

flict graph one in three aspects. Firstly, POP graphs model schedules

instead of histories (e.g., FullWrite in Table 1). Secondly, POP graphs

can express all anomalies with state-expressed (e.g., Dirty Read in

Definition 2.4). Thirdly, POP graphs can model more distinct anom-

alies (e.g., Read Skew and Read Skew Committed in Table 1 are

different but considered as the same by conflict graph). We now

define the consistency of a schedule.

Definition 2.7. Consistency Schedule 𝑆 satisfies consistency if

the represented POP graph exists no cycle.

Checker. By definition 2.7, consistency, no data anomalies, and

acyclic POP graphs are equivalent. Likewise, inconsistency, exist-

ing data anomalies, and existing POP cycles are equivalent. So a

consistency checker is to test if a schedule exists a data anomaly,

i.e., if the represented graph has a cycle.

In theory, the consistency check is sound: if it reports an anom-

aly in a schedule, then that anomaly should exist in every history

of that schedule. The consistency check is complete: if it reports

an anomaly in a schedule, then a POP cycle exists in the schedule

of that anomaly. As a schedule is a prefix of history, the anomaly

occurring in the schedule also occurs in the corresponding histo-

ries. So the soundness is correct. As we defined that the anomaly

schedule exists a POP cycle, the completeness is also correct.

2.3 Consistency check in practice.

Table 1 shows all data anomalies types and their classification. The

anomaly names with BOLD font are 20+ new types of anomalies

that have never been reported (We named them with “committed”

when it has a WCW, WCR, or RCW POP). Those reported in Step

RAT and Step IAT are a tiny portion of them. Unlike previous tools

(e.g., Elle [3]) which randomly issue queries and found anomaly

by accident, our generator provides exact sequences of schedules,

making the consistency check determined and explainable, meaning

it is easy to reproduce and to debug/analyze the result.

Corollary 2.8. If a schedule satisfies consistency, then the sched-
ule does not have any data anomalies in Table 1.

The current research mainly focused on centralized databases.

There is little research on distributed consistency and it remains

ambiguous to do a distributed check. We first define distributed

data anomalies.

Definition 2.9. DistributedDataAnomaliesThe distributed

data anomaly exists if the represented POP graph has a cycle, and

it has at least two objects storing at distributed partitions

The distributed consistency check is to test if a distributed

data anomaly exists. The standard anomalies are not distributed

ones and are insufficient for a distributed check as they are single-

object. By our classification, we can construct a distributed data

anomaly by a DDA or MDA. We particularly designed the test cases

to access the different objects from different partitions sometimes

from different tables. The design is required by table partition-

ing and the data is expected to insert/update in different parti-

tions/shards (e.g., by PARTITION BY RANGE in SQL).



Coo: Partial Order Pair Consistency Model

REFERENCES

[1] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level defini-

tions. In Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073). 67–78.

[2] Atul Adya and Barbara H. Liskov. 1999. Weak Consistency: A Generalized

Theory and Optimistic Implementations for Distributed Transactions. (1999).

[3] Peter Alvaro and Kyle Kingsbury. 2020. Elle: Inferring Isolation Anomalies

from Experimental Observations. Proc. VLDB Endow. 14, 3 (2020), 268–280.

https://doi.org/10.5555/3430915.3442427

[4] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data (San Jose,

California, USA) (SIGMOD ’95). Association for Computing Machinery, New

York, NY, USA, 1–10. https://doi.org/10.1145/223784.223785

[5] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and

Patrick E. O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In SIGMOD
Conference. ACM Press, 1–10.

[6] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency

Control - Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (1983), 465–
483.

[7] Carsten Binnig, Stefan Hildenbrand, Franz Farber, Donald Kossmann, Juchang

Lee, and Norman May. 2014. Distributed snapshot isolation: global transactions

pay globally, local transactions pay locally. 23, 6 (2014), 987–1011.

[8] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich.

2015. Global Sequence Protocol: A Robust Abstraction for Replicated Shared

State. In 29th European Conference on Object-Oriented Programming (ECOOP
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang

Boyland (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 568–590. https://doi.org/10.4230/LIPIcs.ECOOP.2015.568

[9] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic Laws for

Weak Consistency. (2017), 26:1–26:18.

[10] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is

Believing: A Client-Centric Specification of Database Isolation. In PODC. ACM,

73–82.

[11] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. 2004. A Read-Only Transaction

Anomaly under Snapshot Isolation. SIGMOD Rec. 33, 3 (Sept. 2004), 12–14.

https://doi.org/10.1145/1031570.1031573

[12] American National Standard for Information Systems – Database Language. Nov

1992. ANSI X3.135-1992. SQL.

[13] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,

Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen

Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,

Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for

Transactional and Analytical Workloads. In SIGMOD Conference. ACM, 2530–

2542.

[14] Ralf Schenkel, Gerhard Weikum, N Weissenberg, and Xuequn Wu. 2000. Feder-

ated transaction management with snapshot isolation. Lecture Notes in Computer
Science (2000), 1–25.

[15] wikipedia. 2022. Read_Only_Transactions. https://wiki.postgresql.org/wiki/

SSI#Read_Only_Transactions

[16] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang

Wang. 2015. High-performance ACID via modular concurrency control. In

Proceedings of the 25th Symposium on Operating Systems Principles. 279–294.
[17] MaysamYabandeh andDaniel Gómez Ferro. 2012. A critique of snapshot isolation.

In EuroSys. ACM, 155–168.

Table 1: Data anomaly formal expression, classification, and their (Partial Order Pair) POP combinations in POP cycles.

Types of Anomalies No Anomalies Formal expressions POP Combinations

RAT

SDA 1 Dirty Read [1, 12, 16] 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . . 𝐴𝑖 𝑊𝑖𝑅 𝑗 [𝑥 ] − 𝑅 𝑗𝐴𝑖 [𝑥 ]
SDA 2 Non-repeatable Read [12] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅𝑖 [𝑥𝑚+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑅𝑖 [𝑥 ]
SDA 3 Intermediate Read [1, 16] 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝑊𝑖 [𝑥𝑚+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] − 𝑅 𝑗𝑊𝑖 [𝑥 ]
SDA 4 Intermediate Read Committed 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑥𝑚+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] − 𝑅 𝑗𝐶 𝑗𝑊𝑖 [𝑥 ]
SDA 5 Lost Self Update 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅𝑖 [𝑥𝑚+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑅𝑖 [𝑥 ]
DDA 6 Write-read Skew 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝑊𝑗 [𝑦𝑛 ] . . . 𝑅𝑖 [𝑦𝑛 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] −𝑊𝑗𝑅𝑖 [𝑦 ]
DDA 7 Write-read Skew Committed 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . . 𝑅𝑖 [𝑦𝑛 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑅𝑖 [𝑦 ]
DDA 8 Double-write Skew 1 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] −𝑊𝑗𝑊𝑖 [𝑦 ]
DDA 9 Double-write Skew 1 Committed 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]
DDA 10 Double-write Skew 2 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . . 𝑅𝑖 [𝑦𝑛 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑅𝑖 [𝑦 ]
DDA 11 Read Skew [4] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . . 𝑅𝑖 [𝑦𝑛 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑅𝑖 [𝑦 ]
DDA 12 Read Skew 2 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] − 𝑅 𝑗𝑊𝑖 [𝑦 ]
DDA 13 Read Skew 2 Committed 𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑅 𝑗 [𝑥 ] − 𝑅 𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]
MDA 14 Step RAT [8, 9] . . .𝑊𝑖 [𝑥𝑚 ] . . . 𝑅 𝑗 [𝑥𝑚 ] . . . , and 𝑁𝑜𝑏 𝑗 ≥ 2, 𝑁𝑇 ≥ 3 . . .𝑊𝑖𝑅 𝑗 [𝑥 ] . . .

WAT

SDA 15 Dirty Write [12] 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝐴𝑖/𝐶𝑖 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐴𝑖/𝐶𝑖 [𝑥 ]
SDA 16 Full Write 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑖 [𝑥𝑚+2 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑊𝑖 [𝑥 ]
SDA 17 Full Write Committed 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑥𝑚+2 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑊𝑖 [𝑥 ]
SDA 18 Lost Update [4] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑖 [𝑥𝑚+2 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑊𝑖 [𝑥 ]
SDA 19 Lost Self Update Committed 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝐶 𝑗 . . . 𝑅𝑖 [𝑥𝑚+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑅𝑖 [𝑥 ]
DDA 20 Double-write Skew 2 Committed 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . . 𝑅𝑖 [𝑦𝑛 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑅𝑖 [𝑦 ]
DDA 21 Full-write Skew [13] 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑊𝑖 [𝑦 ]
DDA 22 Full-write Skew Committed 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]
DDA 23 Read-write Skew 1 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝑊𝑖 [𝑦 ]
DDA 24 Read-write Skew 2 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] − 𝑅 𝑗𝑊𝑖 [𝑦 ]
DDA 25 Read-write Skew 2 Committed 𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑊𝑖𝑊𝑗 [𝑥 ] − 𝑅 𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]

MDA 26 Step WAT
. . .𝑊𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . , and 𝑁𝑜𝑏 𝑗 ≥ 2, 𝑁𝑇 ≥ 3,

. . .𝑊𝑖𝑊𝑗 [𝑥 ] . . .
and not include (. . .𝑊𝑖1 [𝑦𝑛 ] . . . 𝑅 𝑗1 [𝑦𝑛 ] . . . )

IAT

SDA 27 Non-repeatable Read Committed [12] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝐶 𝑗 . . . 𝑅𝑖 [𝑥𝑚+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑅𝑖 [𝑥 ]
SDA 28 Lost Update Committed 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑥𝑚+2 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑊𝑖 [𝑥 ]
DDA 29 Read Skew Committed [4] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . . 𝑅𝑖 [𝑦𝑛 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑅𝑖 [𝑦 ]
DDA 30 Read-write Skew 1 Committed 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . .𝑊𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] −𝑊𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]
DDA 31 Write Skew [5] 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] − 𝑅 𝑗𝑊𝑖 [𝑦 ]
DDA 32 Write Skew Committed 𝑅𝑖 [𝑥𝑚 ] . . .𝑊𝑗 [𝑥𝑚+1 ] . . . 𝑅 𝑗 [𝑦𝑛 ] . . .𝐶 𝑗 . . .𝑊𝑖 [𝑦𝑛+1 ] 𝑅𝑖𝑊𝑗 [𝑥 ] − 𝑅 𝑗𝐶 𝑗𝑊𝑖 [𝑦 ]

MDA 33 Step IAT [7, 9, 11, 14, 15]

Not include (. . .𝑊𝑖1 [𝑥𝑚 ] . . . 𝑅 𝑗1 [𝑥𝑚 ] . . .
. . . 𝑅𝑖𝑊𝑗 [𝑥 ] . . .

and . . .𝑊𝑖2 [𝑦𝑛 ] . . .𝑊𝑗2 [𝑦𝑛+1 ] . . . ) , 𝑁𝑜𝑏 𝑗 ≥ 2, 𝑁𝑇 ≥ 3

https://doi.org/10.5555/3430915.3442427
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/1031570.1031573
https://wiki.postgresql.org/wiki/SSI#Read_Only_Transactions
https://wiki.postgresql.org/wiki/SSI#Read_Only_Transactions

	1 Preliminary
	2 Consistency Model
	2.1 Partial Order Pair Graph
	2.2 Consistency and Consistency Check
	2.3 Consistency check in practice.

	References

